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FOREWORD

This User’s Manual documents the Finite Element Surface Modeling System: Two-
Dimensional Flow in a Horizontal Plane (FESWMS-2DH) computer program. The
model accurately simulates steady and unsteady flow and is ideal for
simulating two-dimensional flow at width constrictions and highway crossings
of rivers and flood plains. Hydraulic engineers concerned with analyzing
backwater and flow distribution at highway bridge crossings of streams where
complicated hydraulic conditions exist will find this model useful.

FESWMS-2DH has been designated HY-12 in the FHWA Office of Engineering, Bridge
Division’s catalog of hydraulic design microcomputer programs.

The program and User’s Manual was prepared for FHWA by the United States
Geological Survey, Water Resources Division, with technical guidance from the
FHWA Offices of Research, Development, and Technology.

Thomas J. Pasko/ Jr., P. E.
Director, Office of Engineering and
Highway Operations Research and Development

NOTICE

This document is disseminated under the sponsorship of the Department of
Transportation in the interest of information exchange. The United States
Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the author who is responsible
for the facts and the accuracy of the data presented herein. The contents do
not necessarily reflect the policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation. The
United States Government does not endorse products or manufacturers. Trade or
manufacturers’ names appear herein only because they are considered essential
to the objective of this document.
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s VOLUME
= VOLUME
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fl oz fluid ounces

gal
n:
yd®
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3.785
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MASS
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metres cubed
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ounces
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temperature
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212

100
°C
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Section 1

INTRODUCTION

The purpose of this manual is to provide nonprogramming
users of the Finite Element Surface Water Modeling System:
Two-Dimensional Flow in a Horizontal Plane (hereafter referred to
as FESWMS-2DH) the information needed to use the modeling system
effectively. The manual provides sufficient description of the
programs that comprise the modeling system to allow users to
determine when and how the system can be used, and will serve as
a reference document for preparation of input data and inter-

pretation of results.

A user is assumed to be interested mainly in obtaining
results from the modeling system for specific applications. To
apply the modeling system and interpret results effectively, a
user needs to be aware of the logical structure of the modeling
system, the general simulation approach, and any assumptions or
limitations that affect use of the system. A user does not need
to be interested in the details of programming beyond the
preparation of input data and the interpretation of results. The
rest of this manual will enable a nonprogramming user of
FESWMS-2DH to understand the basic logic of the modeling system,
the input data requirements, the flow of data through the model-
ing system, the output generated by the modeling system, and any
limitations affecting the use of output.

FESWMS-2DH uses the finite element method to solve the
system of equations that govern two-dimensional flow in a
horizontal plane. An overview of the modeling system is provided
in section two to help a user determine the applicability of the
modeling system for specific needs. To understand the general
ideas of the solution procedure, some basic concepts of the

finite element method are described in section three. The



governing equations are presented in section four so that a user
will understand how results are obtained and how empirical coef-
ficients are used. Finite element equations that are formed by
applying the finite element method to the governing equations are
described in section five so that a user will understand how
boundary conditions and other special conditions are prescribed,

and how the equations that are formed are solved.

Section six describes how the modeling system is used to
solve a surface-water flow problem, and includes discussions of
(1) data collection, (2) finite element network design, (3)
calibration of a model, (4) validation of a model, and (5) ap-
plication of a model to evaluate the effects of natural or
manmade influences. Section seven describes the logical flow of
data through the modeling system, from the entry of input data to
the generation of output data.

Section eight describes in detail all the input data needed
to run FESWMS-2DH. The material in this section and the three
subsequent sections will serve as a reference for anyone who runs
the modeling system. Section nine describes in detail all the
output data produced by the modeling system, including their
meaning and use. Section 10 describes procedures for organizing
input data to be submitted for a computer run. Section 11 is a
tabulation of warning and error messages produced by the modeling
system. Suggested corrective actions are presented after each

message.

The appendix contains worksheets that simplify entry of
input data. Only one copy of each input data worksheet is in-
cluded in the appendix. Copies of the original worksheets can be
made as needed to assist in entering most of the input data
required by FESWMS-2DH.




Section 2

OVERVIEW OF THE MODELING SYSTEM

FESWMS-2DH is a modular set of computer programs developed
to simulate surface-water flow where the flow is essentially two-
dimensional in a horizontal plane. The programs that comprise
the modeling system have been designed specifically to analyze
flow at bridge crossings where complicated hydraulic conditions
exist, although the programs can be used to model many other
types of steady and unsteady surface-water flows. Three
separate, but interrelated, programs form the core of the model-
ing system: (1) The Data Input Module (DINMOD), (2) the Depth-
Averaged Flow Module (FLOMOD), and (3) the Analysis of OQutput
Module (ANOMOD).

The primary purpose of DINMOD is to generate a two-
dimensional finite element network (grid). Functions performed
by this program include editing of input data, automatic gener-
ation of all or part of the finite element network, refinement of
an existing network, ordering of elements to enable an efficient
equation solution, and graphic display of the finite element
network. As such, DINMOD acts as a preprocessor of the finite
element network (grid) data. Processed network data can be
stored in a data file for use by other FESWMS-2DH programs.

FLOMOD simulates both steady and unsteady (time-dependent)
two-dimensional (in a horizontal plane) surface-water flow. The
program numerically solves the vertically integrated equations of
motion and continuity, using the finite element method of
analysis, to obtain depth-averaged velocities and flow depths.
The effects of bed friction and turbulent stresses are con-
sidered, as are, optionally, surface wind stresses and the
Coriolis force. Flow over weirs, or weir-type structures (such
as highway embankments), and flow through culverts can also be



modeled. The computed two-dimensional flow data can be written

to a data file and stored for future use.

Results of flow simulations are presented graphically and in
the form of reports by ANOMOD. Plots of velocity and unit-flow
vectors; ground-surface and water-surface elevation contours; and
time-history graphs of velocity, unit flow, or stage (water-
surface elevation) at a computation point can be produced. As
such, ANOMOD acts as a postprocessor in the modeling system.

Modeling System Identification

FESWMS-2DH was developed for the Federal Highway
Administration by the U.S. Geological Survey, Water Resources

Division.

The mission of the U.S. Geological Survey's Water Resources
Division is to provide the hydrologic information and understand-
ing needed to best use and manage the Nation's water resources
for the benefit of the people of the United States. To ac-
complish this mission, the Water Resources Division, in
cooperation with State and local governments and other Federal
agencies conducts supportive basic and problem-oriented research
in hydraulics, hydrology, and related fields of science and
engineering to improve the basis for field investigations and to
predict accurately the response of hydrologic systems to natural
or manmade stress. FESWMS-2DH is the result of an effort to
provide a means of simulating flow at highway crossings where
natural processes and manmade structures have created complicated
hydraulic conditions that are difficult to evaluate using conven-

tional methods.

FESWMS-2DH is written in the Fortran 77 programming language
as defined by the American National Standards Institute (1978).




Physical System Highlights

In many surface-water flow problems of practical engineering
concern, the three-dimensional nature of the flow is of secondary
importance, particularly when the width-to-depth ratio of the
water body is large. In such a case, the horizontal distribution
of flow quantities may be the main interest, and two-dimensional
flow approximations can be used to great economic advantage. In
fact, the present state-of-the-art, and lack of suitable data in
most cases, do not justify more complex three-dimensional solu-
tions to most flow problems. Shallow rivers, flood plains,
estuaries, harbors, and even coastal seas are examples of
surface-water bodies where flows may be essentially two dimen-

sional in character.

Throughout this manual, flow is assumed to be strictly two
dimensional, except for the special cases of weir and culvert
flow. A two-dimensional flow description is obtained by in-
tegrating the governing three-dimensional flow equations with
respect to the depth of flow. Velocity in the vertical direction
is assumed to be negligible, so pressure in a column of water is
considered to be hydrostatic. Flow depth and the resulting

depth—averaged velocities are variable in a horizontal plane.

Modeling System Applications

FESWMS—2DH calculates depth-averaged horizontal velocities
and water depth, and the time-derivatives of these quantities if
a time-dependent flow is modeled. The equations that govern
depth—-averaged surface-water flow account for the effects of bed
friction, wind-induced stress at the water surface, fluid
stresses caused by turbulence, and the effect of the Earth's
rotation. Because velocity in the vertical direction is not
modeled, evaluation of phenomena such as stratified flow is

beyond the scope of the modeling system. Also, because water



density is assumed constant, flows resulting from horizontal

density gradients cannot be evaluated.

The modeling system can be used to simulate flow in water
bodies that have irregular topography and geometrical features,
such as islands and highway embankments. Flow over dams, weirs,
and highway embankments, and through bridges, culverts, and gated
openings, also can be modeled. Boundary stresses (bed friction
and surface stresses caused by wind) and stresses caused by

turbulence are determined using empirical relations.

Flow through bridges and culverts can be modeled as either
one-dimensional or two-dimensional flow. One-dimensional flow is
described by an empirical equation that determines the flow rate
through a bridge or culvert on the basis of the water-surface
elevations at the upstream and downstream sides of the structure.
When two-dimensional flow through a bridge is modeled, additional
flow resistance that results from contact between the bridge deck
and water surface is considered. Although it usually is not
practical to model bridge piers directly, the effect of bridge
piers can be accounted for indirectly by increasing resistance

coefficients within a bridge opening.

Flow over highway embankments can be modeled as either one-
dimensional or two-dimensional flow. However, for reasons that
will be discussed later, modeling flow over highway embankments
as one-dimensional flow using empirical weir-flow equations is

usually more accurate.

When flow exists both through and over a bridge, the flow
over the bridge needs to be modeled as one-dimensional weir flow,
and the flow through the bridge needs to be modeled as one-

dimensional bridge/culvert flow.

By modifying the input data that describe an existing physi-
cal system, the effect of changes to the system can be forecast.




Thus, FESWMS-2DH can be used to study the consequences of

designed works and operations.

Methodology

A fundamental prerequisite of any numerical model is a
satisfactory quantitative description of the physical processes
that affect the system that is being modeled. The partial dif-
ferential equations that govern two-dimensional surface-water
flow in a horizontal plane are derived from the full three-

dimensional flow equations.

The numerical technique used to solve the governing equa-
tions is based on the Galerkin finite element method.
Application of the finite element method causes the water body
being modeled to be divided into smaller regions called elements.
An element can be either triangular or quadrangular in shape;
shapes that can easily be easily arranged to fit complex bound-
aries. The elements are defined by a series of node points
located at the element vertices, mid-side points, and, in the
case of nine-node quadrilateral elements, at their centers.
Values of dependent variables are approximated within each ele-
ment using the nodal values and a set of interpolation functions

(also called shape functions).

Approximations of the dependent variables are substituted
into the governing equations, which generally will not be
satisfied exactly, thus forming a residual. The residual is
weighted over the entire solution region. The weighted
residuals, which are defined by equations, are set to zero, and
the resulting equations are solved for the dependent variables.
In Galerkin's method, the weighting functions are chosen to be
the same as those used to interpolate values of the dependent

variables within each element.



The Galerkin finite element method requires the governing
equations to be weighted over the entire solution domain. The
weighting process requires integration, which is performed
numerically using Gaussian quadrature on a single element.
Repetition of the integration for all elements that comprise a
solution region produces a system of nonlinear algebraic equa-
tions when the time derivatives are discretized. Because the
system of equations is nonlinear, an iterative solution procedure
is needed. Newton iteration, or a variation of this technique,
is used, and the resulting system of equations is solved using an

efficient frontal solution scheme.

Input and Output Data

Input data can be classified broadly as (1) program control
data, (2) network data, or (3) initial and boundary condition
data.

Program control data govern the overall operation of a
program. These data include codes that define functions to be
performed, and constant values that are used as coefficients in

equations and apply to the entire finite element network.

Network data describe the finite element network (grid).
These data include element connectivity lists, element property
type codes, node point coordinates, and node point ground-surface
elevations. Also included as network data are sets of empirical
coefficients that apply to a particular element property type.

Initial condition data are starting values of the dependent
variables and their time derivatives at each node point in the
finite element network. Boundary condition data are values of
dependent variables that are prescribed at particular node points

along the boundary of the network.




Output from the modeling system consists of processed net-

work data, computed flow data (depth-averaged velocities and
water depth at each node point, and the derivatives of these
guantities with respect to time for unsteady flow simulations),
and plots of both network data and flow data.

Graphic Output

For the purpose of transportation and long-term storage of
graphical information, graphic output from FESWMS-2DH is written
in a specified format to a data file that is called a plotfile.
A plotfile can be read by a utility program that displays the
graphic output on a specific hardware device. Graphic output
stored in a plotfile can be processed afterward as often as
necessary, stored for future use, or transported from one place
to another.
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Section 3

BASIC CONCEPTS OF THE FINITE ELEMENT METHOD

The finite element method is a numerical procedure for
solving the differential equations encountered in problems of
physics and engineering. Originally devised to analyze struc-
tural systems, the finite element method has developed into an
effective tool for evaluating a wide variety of problems in the
field of continuum mechanics. Development of the finite element
method has been encouraged primarily by the continued advancement
of high-speed digital computers, which provide a means of rapidly
performing the many calculations that are needed to obtain a
solution. Only in recent years has the finite element method
been used to solve surface-water flow problems. Nevertheless, a
large amount of literature on the subject has already emerged.
Lee and Froehlich (1986) provide a detailed review of literature
on the finite element solution of the equations of two-
dimensional surface-water flow in a horizontal plane.

FESWMS~2DH uses the Galerkin finite element method to solve
the governing system of differential equations. The solution
begins by dividing the physical region of interest into a number
of subregions, which are called elements. An element can be
either triangular or quadrangular in shape, and is defined by a
finite number of node points situated along its boundary or in
its interior. A list of nodes connected to each element is
easily recorded for identification and use. Values of a depend-
ent variable are approximated within each element using values
defined at the element's node points, and a set of interpolation
(shape) functions. Mixed interpolation is used in FESWMS-2DH;
that is, quadratic interpolation functions are used to interpo-
late depth-averaged velocities and linear functions are used to

interpolate flow depth.



The method of weighted residuals is applied to the governing
differential equations next to form a set of equations for each
element. Approximations of the dependent variables are sub-
stituted into the governing equations, which generally are not
satisfied exactly, to form residuals. The residuals are required
to vanish, in an average sense, when they are multiplied by a
weighting function and summed at every point in the solution
domain. In Galerkin's method, the weighting functions are chosen
to be the same as the interpolation functions. By requiring the
summation of the weighted residuals to equal zero, the finite
element equations take on an integral form. Coefficients of the
equations are integrated numerically, and all the element (local)
equations are assembled to obtain the complete (global) system of
equations. The global set of algebraic equations is solved

simultaneously.

Method of Weighted Residuals

The method of weighted residuals is a technique for ap-
proximating solutions to partial differential equations.
Although the technique provides a means of forming the element
equations, it is not directly related to the finite element
method. Applying the method of weighted residuals involves two
basic steps. The first step is to assume a general functional
behavior of a dependent variable so that the governing differen-
tial equation and boundary condition equations can be satisfied
approximately. Substitution of the assumed value of the depend-
ent variable into the governing equations usually results in some
error, called a residual. The residual is required to vanish, in
an average sense, within the solution region. The second step of
the method of weighted residuals is to solve the residual equa-
tion for the parameters of the functional representation of the

dependent variable.

To be more specific, let the differential equation for a

problem be written as




Lu - £ =20, (3-1)

where L is a differential operator, u is the dependent variable,
and £ is a known function. The dependent variable is assumed to
be represented by U, which is defined in terms of some unknown
parameters, Ci’ and a set of functions, Ni’ by the equation

m
u=134=) N, C. . (3-2)

When (4 is substituted for u in equation 3-1, it is unlikely the
equation will be satisfied exactly. 1In fact, a trial solution is
defined as

-~

LU - f = £ 4 (3—3)

where € is the residual (error) of the approximate solution. The
method of weighted residuals attempts to determine the m unknown
parameters, Ci’ so that the error, e, is as small as possible
within the solution region. One way of minimizing ¢ is to form a
weighted average of the error and to require the average to
vanish when integrated with respect to the entire solution
region. The weighted average is computed as

Jg W, e drR =0; for i =1, 2,..., m, (3-4)

where R is the solution domain, and Wi are the m linearly inde-
pendent weighting functions. After the weighting functions have
been specified, a set of m simultaneous equations remain to be
solved for the unknown parameters Ci' The second step in apply-
ing the method of weighted residuals is to solve for the Ci, thus
obtaining an approximate representation of the unknown dependent

variable u, using equation 3-2.



There are several weighted residual methods that can be
used. Each method is defined by the choice of weighting func-
tions. The method used most often in finite element analysis is
known as Galerkin's method. 1In Galerkin's method, the weighting
functions are chosen to be the same as those used to represent u
(that is, Wi = Ni’ for i = 1, 2,...,m). Thus, Galerkin's method

requires that

IR N.(LG - £) dR = 0, for i =1, 2,..., m . (3-5)
After the approximating functions N. are specified, the equations
can be evaluated explicitly, and the solution found in a routine

manner.

Elements and Interpolation Functions

The basic idea of the finite element method is to divide a
solution region into a finite number of subregions, called ele-
ments. Within each element, it is assumed that the value of a
continuous quantity can be approximated by a set of piecewise
smooth functions using the values of that quantity at a finite
number of points. The piecewise smooth functions are known as
interpolation or shape functions, and are analogous to the func-
tions N, described in the previous section. The points at which
the continuous quantity is defined are called node points, and
the values of the quantity at the node points are analogous to
the undetermined parameters Ci described in the previous section.

The approximation of a continuous quantity within an element

is written as

~(e) (e) (e) -
u Ni uj p (3-6)

!
He~13

i=1

where Nge) are interpolation functions defined for an element,
and uie are unknown values of u at the n node points in the




element. Equation 3-6 applies to a single point in the solution
region, or to any collection of points, such as those comprising
an element. When Galerkin's method is applied, the left-hand
side of equation 3-5 is computed as the sum of expressions of the

form

(€ (Lal® - £(®)y ar(®); for i =1, 2,..., n, (3-7)
R(e) i

(e) (e

where R is an element domain, and is a function defined

for an element.

A set of such expressions is developed for each element
that comprises a system. The element (local) expressions are
assembled to form the complete set of system (global) equations.
In a finite element solution, the values of a quantity at the
node points are the unknowns. The behavior of the solution
within the entire assemblage of elements is described by the
element interpolation functions and the node point values, when

they have been determined.

Before element equations can be assembled, the particular
types of elements that will be used to model a region, and the
associated interpolation functions, need to be specified; that

)

functions need to satisfy certain criteria so that convergence of

is, the functions Nﬁe need to be chosen. The interpolation

the numerical solution to an exact solution of the governing
differential equations can be achieved. Interpolation functions
depend on the shape of an element and the order of approximation
that is desired. Because the fundamental premise of the finite
element method is that a region of arbitrary shape can be modeled
accurately by an assemblage of elements, most finite element
solutions use elements that are geometrically simple. The most
commonly used two-dimensional elements are triangles and qua-
drilaterals. Although it is conceivable that many types of
functions could be used as interpolation functions, almost all



finite element solutions use polynomials because of their rela-

tive simplicity.

If polynomial interpolation functions are used, linear
variation of a quantity within an element can be determined by
the values provided at the corners (vertices) of a triangular or
quadrangular element. For quadratric variation of a quantity,
additional values need to be defined along the sides, and pos-
sibly in the interior, of an element. FESWMS-2DH uses three
types of two-dimensional elements: (1) 6-node triangles, (2) 8-
node "serendipity" quadrilaterals, and (3) 9-node '"Lagrangian"
quadrilaterals. Both types of quadrilateral elements use identi-
cal linear interpolation functions, but their quadratic functions
differ because of the presence of an additional node at the
center of the 9-node quadrilateral element. The three types of
elements used in FESWMS-2DH are illustrated in figure 3-1.

It may be desirable to model some complex geometric features
using elements that have curved sides rather than straight sides.
The basic idea behind development of curve-sided elements is
mapping (transformation) of a simple "parent" element, defined in
a local natural coordinate system, to the desired curved shape,
defined in a global Cartesian coordinate system. Coordinate
mappings for triangular and quadrangular elements are illustrated
in figure 3-2. The transformation from straight to curved sides
is accomplished by expressing the global coordinates (x,y) in
terms of the local coordinates (f,n) using interpolation func-
tions in just the same way that a solution variable is
interpolated within an element. Thus, the global coordinates are

computed as

n
- "(e) _(e) -
b 4 —izl Ni X3 (3-8a)




/ Node point

Figure 3-1. Examples of the three types of two-dimensional
elements used in FESWMS-2DH: (A) A 6-node triangle; (B) an
8-node "serendipity" quadrilateral; and (C) a 9-node "Lagrangian"

guadrilateral.
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Figure 3-2. Illustration of coordinate mapping of a triangular
and a quadrangular element.
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and
noo,
y =1 N, (€) yle) (3-8b)

[} ]
where Ni(e) = Ni(e)(E,n). Quadratic interpolation functions are
used in FESWMS-2DH to transform local coordinates to global

coordinates.

The local coordinates (§ and n) depend on the shape of an
element (that is, triangular or quadrangular). The coordinate
system and the natural coordinate interpolation functions for
parent elements of triangular and quadrangular global elements
are illustrated in figures 3-3 to 3-5. Both linear and quadratic
interpolation functions are given for each element shape because
mixed interpolation is used to solve the governing differential
equations (that is, linear functions are used to interpolate
depth, and quadratic functions are used to interpolate depth-

averaged velocities).

If a finite element equation contains derivatives of depend-
ent variables with respect to the global coordinates x and y,
then the derivatives of interpolation functions with respect to x

and y also need to be defined because, for example,

sy 3 an(e)
I O LRI AR DEED SRy L (3-9)

ax
Because the interpolation functions are given in terms of local
coordinates, it is necessary to transform the local derivatives
to global derivatives. By the general rules of partial differen-
tiation,

8N, 8N, 3L 3N, an

5% - 3F 9% ' 3n 3% (3-10a)
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Figure 3-

NATURAL COORDINATE INTERPOLATION FUNCTIONS
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3 Natural coordinate system and interpolation
functions for a triangular parent element.
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PARENT ELEMENT NATURAL COORDINATE INTERPOLATION FUNCTIONS

@ Corner node E =85, m =7
(O Midside node !

n =1 . .
Linear Interpolation
n
N l £ ole - Corner _nodes
= —] =
N =0.25(1 + § )1 + 7 )
i o} o)
n = -1

Quadratic Interpolation

Corner nodes

N=025(1+&)1 +«+m ) +m - 1)
i o o o o

Midside nodes

N=05(1 -8 «n )
1 (o}

£ -0
i

N =051 - n20 + &

3y m =0
1 o} 1

Figure 3-4. Natural coordinate system and interpolation
functions for a "serendipity" quadrangular parent element.
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PARENT ELEMENT NATURAL COORDINATE INTERPOLATION FUNCTIONS
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Figure 3-5. Natural coordinate system and interpolation
functions for a "Lagrangian" quadrangular parent element.
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and

BN, B8N, dE 3N, dn

—— e e e —-
3y 3f 3y an dy ° (3-10b)
However, § and n usually cannot be expressed explicitly in terms
of x and y. It is necessary first to consider N. to be a func-
tion of x and y. Writing the derivatives of Ni with respect to §

and n, and dropping the superscript (e), yields, in matrix form,

aN. aN. N,
1 ax 3y 1 1
9L 3t 93t 3x 9x
= = [J] (3-11)
BNi ax 3y 8Ni aNi
an an an oy 3y

where [J] is known as the Jacobian matrix. Using equation 3-8,
the Jacobian matrix can be computed explicitly in terms of the

local coordinates as

(3] = , (3-12)
1
Lo %1 L vy

1
where Ni is the interpolation function that defines the coor-
dinate transformation. The global derivatives are then computed

as
BNi aNl
9X -1 9g
= [J] ; (3-13)
BNl BNl
dy an
or
aN. dy 9dN. dy 9N,
1 -1 1 1
W = IJI (3—ﬁ 'BT - a—g' a—n—) (3"14&)



and

(3-14b)

where

|| = 57 5= - 5= =7 (3-15)

is the determinant of [J}]. The operations indicated in equations
3-13 and 3-14 depend on the existence of [J]"l everywhere in each
element. In addition, the coordinate mapping provided by equa-
tion 3-8 is one-to-one only if |J| does not vanish within an

element.

The area of an element also needs to be expressed in terms
of the local coordinates £ and n. It can be shown (Sokolnikoff
and Redheffer, 1966, p. 355) that

dx dy = |J| 4g dn . (3-16)
Using equation 3-16, it is a simple matter to integrate a func-
tion numerically with respect to the area of a two-dimensional
triangular or quadrangular element that has straight or curved

sides.

Numerical Integration

Numerical integration is used to evaluate the integrals that
appear in the derivative transformation equations presented in
the previous section. In numerical integration, the function
being integrated is evaluated at specific locations within an
element. The value of the function at each numerical integration
point is multiplied by a weighting factor and summed. The summa-

tion process for a two-dimensional element is written as




o~ )

IIAef(gln) dg dn = A Wlf(Elfnl) r (3-17)

e.

1=1

where A is the element area; £ is the function being integrated;

k is the number of numerical integration points; Wi is a weight-

ing factor for the ith integration point; and gi and n; are local
coordinates of the ith integration point. The local coordinates,
gi and n;s, are invariant with respect to the shape of the element
in the global coordinate system.

A numerical integration scheme needs to be of sufficient
accuracy to assure convergence of a finite element solution.
Strang and Fix (1973) suggest that convergence will occur if a
numerical integration scheme is accurate enough to compute ex-
actly the area of an element. An exact integration of element
area requires that a formula that provides at least third-order
accuracy be used to integrate curve-sided quadratic elements.
For parabolic quadrilaterals, at least 2 by 2 Gaussian integra-
tion needs to be used. For parabolic triangles, at least a 3-
point formula needs to be used. However, it has been found that
although an exact integration of element area may guarantee
convergence as the size of an element approaches zero, an in-
tegration formula that has greater accuracy may be needed to
integrate accurately some terms in an equation. For this reason,
numerical integration formulas that provide sixth-order accuracy
are used. The locations of numerical integration points and the

associated weighting factors are shown in figure 3-6.
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Figure 3-6. Numerical integration point coordinates and
weighting factors for triangular and quadrangular parent
elements.




Section 4

GOVERNING EQUATIONS

The equations that govern the hydrodynamic behavior of an
incompressible fluid are based on the classical concepts of
conservation of mass and momentum. For many practical surface-
water flow applications, knowledge of the full three-dimensional
flow structure is not required, and it is sufficient to use mean-
flow quantities in two perpendicular horizontal directions.
Equations that describe depth-averaged two-dimensional flow are
presented in this section. Additional equations that are used to
model special cases of one-dimensional flow through bridges and
culverts and one-dimensional flow over weirs and highway embank-
ments are described. 1Initial and boundary conditions needed to

solve the set of governing equations are also discussed.

Depth~Averaged Flow Equations

The depth-averaged velocity components in the horizontal x

and y coordinate directions, respectively, are defined as

z, +H
U = %I b7y az (4-1a)
%p
and
z, +H
vV = %f b v dz , (4-1b)
“h

where H is the water depth; z is the vertical direction; zy is
the bed elevation; u is the horizontal velocity in the x direc-
tion at a point along the vertical coordinate; and v is the
horizontal velocity in the y direction at a point along the
vertical coordinate. The coordinate system and variables used



are illustrated in figure 4-1. Depth-averaged velocity is il-

lustrated in figure 4-2. The depth-averaged surface-water flow
equations are derived by integrating the three-dimensional con-
servation of mass and momentum equations with respect to the
vertical coordinate from the bed to the water surface, assuming
that vertical velocities and accelerations are negligible (see
Jansen and others, 1979, p. 41 for a thorough derivation). The
vertically-integrated momentum equations are

9z 2
d 9 3 1 3H
—a—E(HU) + ﬂ(BuuHUU) + W(BUVHUV) + ng}_(_ + fgﬁ— - QHV
1r.bo s 23 -3 = -
+ E[Tx Tx ax (HTyy) By(HTxy)] 0 (4=2)
in the x direction, and
9z 2
9 3 ] b 1 _3H
g (HV) + 53;(B, HVU) + W(BVVHVV) + gH_—By + 293y~ + QHU
1,.b s 3 a - _
+ E[TY Ty §§(thx) §§(Hryy)] = 0 (4-3)
in the y direction, and the continuity (conservation of mass)
equation is
oH 3 3 _ _
3t * ax(HU) + g5(HV) =0, (4-4)

where Buu' 8 B, and va are momentum correction coefficients

uv’ “wvu
that account for the variation of velocity in the vertical

direction; g is gravitational acceleration; Q is the Coriolis

parameter; p is the density of water, which is assumed constant;

‘tb and Tb
X

- . s s .
tions, respectively; T1_ and L are surface shear stresses acting

are bottom shear stresses acting in the x and y direc-

7 T 7 T 7 T
XX Xy YX YY

are shear stresses caused by turbulence where, for example, Txy
is the shear stress acting in the x direction on a plane that is

in the x and y directions, respectively; and t

perpendicular to the y direction.




Figure 4-1. 1Illustration of the coordinate system and variables
used to derive the depth-averaged surface-water flow equations.




Depth—Averaged Velocities

Y — Z+ H
1= 1 U= Tlr udz
; %
H Zn+ H
Z V= —}Ij' vdz
Lol =
X 7 Y T T NN A 77

Zy
_ Ratum

Figure 4-2. 1Illustration of depth-averaged velocity.
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Momentum Correction Coefficients

uv’ Bvu' and

va) result from the vertical integration of the conservation of

The momentum correction coefficients (Buu’ B

momentum equations and account for vertical variations of
velocities in the x and y directions. The momentum correction
coefficients are used to multiply the convective momentum terms
in equations 4-2 and 4-3, and are computed as

1 2, +H
Buu = 500 _[ uu dz , (4-5a)
z
b
z, +tH
1 b
Buv = Byu = mov ) uv dz , (4-5b)
2z
b
and
z, +H
_ 1 b _
va = 5V I vv dz . (4-5c¢)
b

The momentum correction coefficients depend on the vertical
velocity distribution, and often are assumed to equal unity (that
is, a uniform vertical velocity distribution is assumed).

If the velocity in the vertical direction can be computed as

U, z - zb

u = —K——lOg(——k————‘) ’ (4“6)

where U, = /EEU is bed shear velocity; Ce is a dimensionless
bottom shear-stress coefficient (to be discussed later); k is von
Karman's constant; and k 1s a constant that has a dimension of
length; then the resulting momentum correction coefficients are

all equal and are computed as



£
B=1+— . (4-7)

The momentum correction coefficient in FLOMOD is computed as

B = Bo + chf . (4-8)
Equations 4-7 and 4-8 are equivalent when By = 1.0 and Cg = l/Kz.
The coefficient k has been found to equal approximately 0.4, from
which g equals 6.25. A constant momentum correction coefficient
can be specified by setting BO equal to the desired value, and
setting cB equal to zero. The default values in FLOMOD for Bo

and c, are 1.0 and 0.0, respectively. Acceptance of these

B

default values means that vertical variations in velocity are

assumed to be negligible.
Coriolis Parameter

The Coriolis parameter, Q, is equal to 2w sin ¢, where w is
the angular velocity of the rotating Earth (7.27 x lO_5 radians
per second), and ¢ is the mean angle of latitude of the area
being modeled. The terms in the momentum equations that contain
8 account for the effect of the Earth's rotation on water move-
ment. The sign of ¢ is positive in the northern hemisphere and
negative in the southern hemisphere. A constant value of the
Coriolis parameter is used in FLOMOD (that is, the variation of @
within the area covered by a finite element network is assumed to
be negligible). For most shallow flows where the width to depth
ratio is large (for example, flow in rivers and flood plains),
the Coriolis effect will be small and can be safely ignored.

Bottom Shear Stresses

The directional components of the bottom shear stress are

computed as




Ti = pch(U2 v v3H/20 (azb/ax)2 + (azb/ay)211/2 (4-9)
and
r? = pch(U2 + vH)/201 4 (azb/ax)2 + (azb/ay)z]l/z, (4-10)

where Ce is a dimensionless bed-friction coefficient, and the
square root terms that contain the values azb/ax and sz/ay
account for the effect of a sloping bed.

The bed friction coefficient Ce is computed either as

- 9 _
c. = (4-11)
£ o2
or
_‘1‘_‘3_
c. = , (4-12)
£ oul/3

where C is the Chézy discharge coefficient; n is the Manning
roughness coefficient; and ¢ is a factor that equals 2.208 when
U.S. Customary units are used, or 1.0 when S.I. units are used.

FLOMOD allows Manning roughness coefficients to be varied as
a function of flow depth. Vertical variation of roughness coef-
ficients can be used to model flow through areas where the
surface roughness either increases or decreases with the depth of
flow, depending on the ground cover and the type and density of
vegetation. FLOMOD does not allow Chézy coefficients to be

specified as a function of flow depth.

Values of Chézy discharge coefficients and Manning roughness
coefficients for natural and man-made channels, as well as flood
plains, can be estimated using references such as Chow (1959),
Barnes (1967), and Arcement and Schneider (1984). However,
coefficients in these references have been determined on the



basis of assumed one-dimensional flow, and implicitly account for
the effects of turbulence and deviation from a uniform velocity
in a cross section. Because the depth-averaged flow equations
directly account for horizontal variations of velocity and the
effect of turbulence, values of Cg computed using coefficients
based on a one-dimensional flow assumption may be slightly
greater than necessary. Little information is available to help
select coefficients for two-dimensional depth-averaged flow
computations. For the time being, it is suggested that Chézy or
Manning coefficients be estimated on the basis of available

references and experience.
Surface Shear Stresses

The directional components of surface shear stress caused by

wind are computed as

s _ 2 _
Ty = cspaw cos Y (4-13)
and
5 = ¢ o} W2 sin ¢ (4-14)
y s"a !

where Cg is a dimensionless surface stress coefficient; Pa is the
density of air; W is a characteristic wind velocity near the
water surface; and ¥ is the angle between the wind direction and

the positive x-—axis.

The surface stress coefficient has been found to be a func-

tion of wind speed, and is computed as

_.3 .
C x 10 7; if W< W .
c = sl min 3 . (4-15)

[csl + csz(W - wmin)] x 10 7; if W > Wmin




For wind speed in meters per second, measured 10 meters above the
sl ~ L.0, Cs2 ©

= 4 m/s. Wang and Connor (1975) compare several
= 1.1, Cyp = 0.0536, and

= 1.0, ¢ = 0.05,

water surface, Garratt (1977) reports that c
0.067, and wmin

relations for Cq and conclude that Cgq
Wmin = 0 m/s. Hicks (1972) reports that c
and wmin = 5.0 m/s.

sl s2

Factors other than wind velocity can influence the value of
the surface stress coefficient Cq- For example, Hicks and others
(1974) show that as water becomes shallow (less than 2.5 m deep)
long period waves are not able to develop fully. As a result,
the water surface will be smoother and the value of Cq remains

close to 1.0 x 10 ° for all wind speeds.

Equation 4-15 is used in FLOMOD to compute the surface

stress coefficient. The coefficients cSl and c and the mini-

s2'

mum wind velocity W can be specified. Default values of c

min’ sl

and c,, are 1.0 and 0.0, respectively. The default value of
Wmin is 0.0 m/s.

Stresses Caused by Turbulence

The depth-averaged stresses caused by turbulence are com-
puted using Boussinesq's eddy viscosity concept whereby the
turbulent stresses, like viscous stresses, are assumed to be
proportional to gradients of the depth-averaged velocities. The
turbulent stresses are computed as

~ au U

Tex = pvxx(§§ + %) (4-16a)

_ g QU v _
Xy 2. p\)xy(ay o) (4-16b)

and

T E AL AN (4-16C)

T = AV -
vy P yy(ay y



where 9 and ny are directional values of the depth-

xx' vxy’ Vyx'
averaged kinematic eddy viscosity (turbulent exchange
coefficient). 1In FLOMOD, the depth-averaged kinematic eddy
viscosity is assumed to be isotropic (that is, Vex = vxy = vyx
= ny), and is denoted by 9.

Eddy viscosity is related to eddy diffusivity for heat or

mass transfer, T, by

r = §— , (4-17)

where Oy is an empirical constant called the Prandtl number (for
diffusion of heat) or Schmidt number (for diffusion of mass).
Many experiments on spreading of dye in open channels (Fischer
and others, 1979) have shown that values of dimensionless dif-
fusivity, e, = T/U_,H, usually are between 0.1 and 0.2 in straight
uniform channels, and that channel curves and sidewall ir-
regularities increase e,. Values of e, in natural streams hardly
ever are less than 0.4. The turbulent Prandtl/Schmidt number has
been found in heat and mass transfer experiments to vary from
0.5, in free shear flows, to 0.9, in flow regions near walls
(Rodi, 1982, p. 587). Assuming that the turbulent exchange of
mass and momentum are similar (that is, o, = 1.0), eddy viscosity
in natural open channels can be related to the bed shear velocity
and depth by

~

9 = (0.6 + 0.3) UH, (4-18)

where larger values are likely to occur if a channel has sharp

curves or rapid changes in geometry.
In FLOMOD, eddy viscosity is computed using the formula

O =90, + c UsH (4-19)




where Go is a base kinematic eddy viscosity, and cu is a dimen-
sionless coefficient. Comparing equations 4-18 and 4-19, an
approximate value for cu in natural channels is 0.6. A constant

eddy viscosity is assigned by specifying cu = 0.0 and Go > 0.

Weir Flow and Roadway Overtopping

The depth-averaged flow equations were derived by assuming
that velocity in the vertical direction is negligible. However,
flow over weirs, or weir-like structures such as roadway embank-
ments, can have a significant velocity component in the vertical
direction and cannot always be simulated accurately using the
depth-averaged flow equations. Flow over weirs (roadway
embankments) is modeled more accurately using an empirical equa-

tion to calculate discharge over a horizontal weir.

To model one-dimensional flow over a weir or roadway embank-
ment, the weir or roadway is divided into sections that are
called weir segments. Each weir segment is described by either
one or two boundary nodes, a discharge coefficient, and the
length and crest elevation of the segment. If the areas on both
the upstream and downstream sides of a weir segment are included
in a finite element network, two boundary nodes are needed, one
on each side of the segment. Water that flows over a weir seg-
ment defined by two nodes is considered to leave the network at
the upstream node (the node with the highest water surface) and
to enter the network at the downstream node. If the area on only
one side of a weir segment is included in a network, only one
boundary node is needed for each weir segment. Water flowing
over a welr segment defined by only one node is considered to

leave the network at the node and not return to the network.
Flow over a weilr segment, Qw’ is computed as

Q. = K (z, - 2) ’ (4-20)



where Kw is a weir coefficient; zg is the elevation of the energy
head at the upstream node; and z, is the crest elevation of the
welr segment. The weir coefficient, Kw, is computed as

KW = CSUb CW Lw/g ’ (4-21)

where C is a coefficient that adjusts Kw for submergence of a

weir segggnt by tailwater; Cw is a dimensionless discharge coef-
ficient for free (unsubmerged) weir flow (usually about 0.53);

and Lw is the length of the weir segment. The submergence coef-
ficient, Csub’ is determined automatically using a relation taken
from Bradley (1978) which is presented in table 4-1. If only one
boundary node is used to define a weir segment, unsubmerged flow

is assumed (that is, Csub is set equal to 1.0).

Bridge and Culvert Flow

Flow through bridges and culverts can be modeled as either
one-dimensional or two-dimensional flow. If the width of a
bridge or culvert is small in relation to the width of the chan-
nel or flood plain on which it is located, it is probably best to
model the flow as one-dimensional flow. If the width of a bridge
or culvert is large in relation to the width of the channel of
flood plain, two-dimensional flow probably needs to be modeled.

One-Dimensional Bridge/Culvert Flow

One-dimensional flow through a small bridge or a culvert is
calculated using an equation developed for flow through culverts.
Each bridge/culvert is described by either one or two boundary
nodes, a discharge coefficient, and the physical characteristics
of the bridge or culvert. If the areas at both ends of a
bridge/culvert are included in a finite element network, two

boundary nodes are needed. Water flowing through a




Table 4-1. Submergence factor, Csub’ for

weir flow over a roadway embankment for
various ratios of submergence.

Submergence Submergence

ratio® factor, C

sub

less than or

equal to 0.75 1.000
0.80 0.995
0.84 0.987
0.86 0.975
0.88 0.960
0.90 0.930
0.92 0.885
0.94 0.885
0.96 0.710
0.98 0.575
0.99 0.450
1.00 0.000

t

a . _ h _
Submergence ratio = (zs zc)/(ze zc),

where zg is the water-surface elevation at
the downstream side of the roadway; Z. is

h

the roadway crest elevation; and zg is the

energy head elevation at the upstream side
of the roadway.



one-dimensional bridge or culvert is considered to leave the
network at the upstream node (the node with the highest water
surface) and to enter the network at the downstream node. If the
area on only one end of a bridge/culvert is included in a net-
work, only one boundary node is needed for the culvert. Water
flowing through the culvert is considered to leave the network at

the node and not return to the network.

Flow through a culvert is calculated as either type 4 flow
or type 5 flow as described by Bodhaine (1968). For type 4 flow
(fully submerged), a culvert is submerged by both headwater and
tailwater. For type 5 flow (inlet control), the top edge of a
culver. entrance contracts the flow in a manner similar to a
sluice gate, and the culvert barrel flows partly full, at a depth
less than the critical depth. Culvert flow rate, QC, is computed

as
K (zh - zt)l/2 ; for type 4 flow
c'“s s
Qc = h 1/2 (4-22)
Kc(zs - Zinv) ; for type 5 flow

where KC ii a coefficient that depends on the type of flow in the
culvert; z, is the water-surface elevation at the upstream end of
a culvert (headwater elevation); zz is the water-surface eleva-
tion at the downstream end of the culvert (tailwater elevation);
and z. is the invert elevation at the inlet of the culvert.

inv
For type 4 flow, the culvert coefficient is computed as

29 ¢ZnZL_ -1/2
C

where Cc is a dimensionless discharge coefficient; AC is the
cross section area of the culvert; n, is the Manning roughness
coefficient of the culvert barrel; Lc is the length of the cul-
vert barrel; and RC is the hydraulic radius of the culvert barrel




flowing full. For type 5 flow, the culvert coefficient is com-

puted as

K, = CAY2g . (4-24)

Type 4 flow discharge coefficients

The discharge coefficients, Cc’ for type 4 flow conditions
that are described in the following subsections are taken from
Bodhaine (1968).

Flush setting in vertical headwall.--Discharge coefficients

for box or pipe culverts placed flush in a vertical headwall are
presented in table 4-2. The coefficients in table 4-2 apply to
square—-end pipe or box culverts, corrugated-metal culverts,
concrete~-pipe culverts that have beveled or bell-mouthed ends,
and box culverts that have rounded or beveled sides. The dis-
charge coefficient for pipe culverts with flared ends is 0.90 for

all culvert diameters.

Wingwall Entrance.--The addition of wingwalls to the

entrance of a pipe culvert placed flush in a vertical headwall
does not affect discharge, so coefficients given in table 4-2
also apply to pipe culverts that have wingwalls. Discharge
coefficients for box culverts that have wingwalls are given in
table 4-3. If a box culvert has a wingwall angle equal to 90
degrees, and a rounded or beveled entrance, the discharge coeffi-
cient needs to be adjusted. Adjustment coefficients kr and kw
that account for rounded and beveled entrance edges, respec-
tively, are given in tables 4~4 and 4-5, respectively.

Projecting Entrance.--The discharge coefficient for

corrugated-metal pipe and pipe-arch culverts that extend past a
headwall or embankment is computed by multiplying the appropriate
coefficient from table 4-2 by the adjustment factor kL given in



Table 4-2. Type 4 flow discharge coefficient,
Cc, for box or pipe culverts placed flush in

a vertical headwall for various ratios of
entrance rounding or beveling.

Entrance rounding Discharge
or beveling ratio coefficient,
r/b, w/b, /D, or w/Da CC
0.00 0.84
0.02 0.88
0.04 0.91
0.06 0.94
0.08 0.96
0.10 0.97
0.12 0.98
4y = radius of entrance rounding;
b = width of box culvert;
w = length of a chamfer;
D = minimum inside diameter of pipe culvert.

Table 4-3. Type 4 flow discharge coefficient, Cc’ for

box culverts that have wingwalls and a square, rounded,
or beveled entrance.

Wingwall Discharge coefficient for entrance that is

angle
in degrees Square Rounded or beveled
30 to 75 0.87 Value from table 4-1 but

no less than 0.87

90 0.75 0.75 kr or 0.75 kw




Table 4-4. Discharge coefficient adjustment
factor, kr’ that accounts for entrance

rounding of pipe or box culverts placed
flush in a vertical headwall.

Entrance Discharge
rounding coefficient
ratio adjustment
r/b or r/Da factor, kr
0.00 1.000
0.02 1.042
0.04 1.082
0.06 1.120
0.08 1.155
0.10 1.180
0.12 1.195
greater than
or equal to 0.14 1.200

radius of entrance rounding;
width of box culvert;
minimum inside diameter of pipe culvert.

oo+
oo



Table 4-5. Discharge coefficient adjustment factor,

kw’ that accounts for entrance beveling of pipe or box

culverts placed flush in a vertical headwall.

Entrance Discharge coefficient adjustment factor kw
beveling for a bevel angle in degrees of
ratio
w/b or w/D? 30 45 60
0.00 1.000 1.000 1.000
.01 1.014 1.033 1.045
.02 1.027 1.063 1.088
.03 1.039 1.087 1.128
.04 1.500 1.107 1.162
.05 1.060 1.123 1.194
.06 1.068 1.135 1.220
.08 1.080 1.150 1.260
.10 1.088 1.150 1.280
@r = radius of entrance rounding;
w = length of a chamfer;
D = minimum inside diameter of pipe culvert.




table 4-6. The discharge coefficient for concrete-pipe culverts
that have a beveled entrance and that have a projecting entrance
are the same as those given in table 4-2,

Mitered pipe set flush with sloping embankment.--The dis-

charge coefficient for pipes mitered and placed flush with a
sloping embankment is 0.74. For corrugated-metal pipe culverts
and pipe-arch culverts that project beyond an embankment, the
base coefficient 0.74 is multiplied by the adjustment factor kL
given in table 4-6.

Type 5 flow discharge coefficients

The discharge coefficients, Cc’ for type 5 culvert flow
conditions described in the following subsections also are taken
from Bodhaine (1968).

Flush setting in vertical headwall.--The discharge coeffi-

cient for box or pipe culverts placed flush in a vertical
headwall is given in table 4-7. The coefficients in table 4-7
apply to square-end pipe and box culverts, corrugated-metal pipe
and pipe-arch culverts, concrete pipe culverts that have a
beveled entrance, and box culverts that have rounded or beveled
sides. Type 5 flow usually will not occur in a pipe culvert that
has flared ends.

Wingwall entrance.--For pipes placed flush in a vertical

headway, the addition of wingwalls does not affect the discharge
coefficient given in table 4-7. The discharge coefficient for

box culverts that have wingwalls and a square entrance is given
in table 8. If the entrance is rounded or beveled, the value of
% % for the entrance is used to select a discharge coefficient
from table 4-4. However, the discharge coefficient obtained from

or

table 4-8 is used as a lower limit.



Table 4-6. Discharge coefficient adjustment
factor, kL’ for pipe and pipe-arch culverts

that extend beyond a headwall or embankment.

Value of Adjustment Value of Adjustment

a
LP/D factor, kL Lp/D factor, kL
0.00 1.00 0.00 1.00

.01 .99 .1 .92
.02 .98 .2 .92
.03 .98 .3 .92
.04 .97 .4 .91
.05 .96 .5 .91
.06 .95 .6 .91
.07 .94 .7 .91
.08 .94 .8 .90
.09 .93 .9 .90
.10 .92 1.0 .90

aLp = distance a culvert barrel projects

beyond a headwall or embankment; and

D = the inside diameter of a pipe culvert

or the maximum inside height of a pipe-
arch culvert.




Projecting entrance.--The discharge coefficient for pipe or

pipe—arch culverts that extend past a headwall or embankment is
computed by multiplying the coefficient obtained from table 4-7

by the adjustment factor, k given in table 4-6. The discharge

LI
coefficient for projecting concrete pipe culverts is obtained
from table 4-7 but is not adjusted for a projecting entrance.

Mitered pipe placed flush in an embankment.--The discharge

coefficient for mitered pipe culverts placed flush in a sloping
embankment is computed by multiplying the coefficient obtained
from table 4-7 by 0.92. If the mitered pipe is thin-walled (for
example, a corrugated metal culvert) and projects beyond the
embankment, the discharge coefficient also is multiplied by the
adjustment factor kL given in table 4-6.

Two-Dimensional Bridge/Culvert Flow

Two-dimensional flow through a bridge or culvert is modeled
exactly as ordinary free-surface flow when the water surface is
not in contact with the top of the bridge or culvert opening
(unconfined flow). When the water surface is in contact with the
top of the opening (hereafter referred to as the "ceiling")
confined, or pressure, flow conditions exist. The depth-averaged
flow equations are modified at node points where pressure flow
occurs, and pressure head rather than depth is computed.

Although it usually is not practical to include them in a net-
work, the effect of piers and piles on flow can be taken into
account by increasing bed friction coefficients within a bridge

opening.

Depth—averaged pressure flow through a bridge or culvert is
modeled by specifying a "ceiling"” elevation at node points within
the opening. When the water surface is in contact with the
ceiling, pressure flow exists and the governing depth-averaged
flow equations are modified. The momentum equations become



Table 4-7. Type 5 flow discharge coefficient, Cc, for box or

pipe culverts placed flush in a vertical headwall for various
ratios of entrance submergence and entrance rounding or beveling.

Entrance Discharge coefficient CC for an entrance rounding
submergence or beveling ratio r/b, w/b, r/D, or w/D of
ratio?

0.00 0.02 0.04 0.06 0.08 0.10 0.14

1.4 0.44 0.46 0.49 0.50 0.50 0.51 0.51
1.5 .46 .49 .52 .53 .53 .54 .54
1.6 .47 .51 .54 .55 .55 .56 .56
1.7 .48 .52 .55 .57 .57 .57 .57
1.8 .49 .54 .57 .58 .58 .58 .58
1.9 .50 .55 .58 .59 .60 .60 .60
2.0 .51 .56 .59 .60 .61 .61 .62
2.5 .54 .59 .62 .64 .64 .65 .66
3.0 .55 .61 .64 .66 .67 .69 .70
3.5 .57 .62 .65 .67 .69 .70 .71
4.0 .58 .63 .66 .68 .70 .71 .72
5.0 .59 .64 .67 .69 .71 .72 .73
a . h h .
Entrance submergence ratio = (zs - zinc)/D’ where 2z, is the

water surface elevation at the culvert entrance; 2z is the

inv
invert elevation at the culvert entrance; and D is the inside
height of a box culvert or the inside diameter of a pipe cul-

vert.




Table 4-8.

box culverts that have wingwalls for various ratios of
entrance submergence and various wingwall angles.

Type 5 flow discharge coefficient, C_,

Entrance

submergence

Discharge coefficient Cc for a wingwall
angle in degrees of

30 45 75
1.3 .44 0.44 0.42
1.4 .46 .46 .43
1.5 .47 .47 .45
1.6 .49 .49 .46
1.7 .50 .50 .47
1.8 .51 .51 .48
1.9 .52 .52 .49
2.0 .53 .53 .49
2.5 .56 .56 .52
3.0 .58 .58 .54
3.5 .60 .60 .55
4.0 .61 .61 .56
5.0 .62 .62 .58

entrance;

a .
Entrance submergence ratio

}/D, where z:

is the water surface elevation at the culvert
is the invert elevation at the culvert

entrance; and D is the inside height of the culvert.
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S _(Huy + S(mv) = 0 (4-27)
X oy !

where P is pressure head; L is the ceiling elevation; Tg and Tg
are directional components of shear stress at the ceiling; and

H = zC = 2y
are U, V, and P. The effect of increased frictional resistance

The dependent variables in the confined flow case

created by contact between water and the ceiling is described by
the surface shear stress term. The directional components of

ceiling shear stress are computed as

C

€ = pch(02 v vH/20 (azc/ax)2 + (azc/ay)z]l/2 (4-28)
and
T; = pch(U2 v v Y201 (azc/ax)2 + (azc/ay)2]1/2, (4-29)

where Ce is considered to be the same dimensionless friction
coefficient used to model the bed shear stress. The bracketed
term that contains 3zc/3x and azc/ay accounts for the increased
resistance caused by a sloped ceiling. When pressure flow oc-

curs, surface stresses caused by wind are not considered.




Initial and Boundary Conditions

To solve the system of depth-averaged flow equations both
initial conditions and boundary conditions need to be specified.
From the mathematical point of view, the initial conditions and
the number and kind of boundary conditions that are specified
need to make the problem well-posed (that is, stable). A well-
posed problem is one in which increasingly smaller changes to
boundary conditions produce increasingly smaller changes in the
solution at points not located on the boundary. When an incor-
rect number of boundary conditions or boundary conditions of the
wrong type are prescribed, small changes to the boundary condi-
tions may result in large changes in the solution on the interior
of the modeled region. A system of equations that exhibits this
kind of unstable behavior is said to be ill-posed.

Initial Conditions

To obtain a solution, both the water depth and the depth-
averaged x and y velocity components need to be specified as
initial conditions of the problem throughout the entire solution
region. When initial conditions are unknown, a cold-start proce-
dure is used. During a cold-start procedure, the same water-
surface elevation is assigned to every node point in a finite
element network, and velocities are set to zero everywhere. When
results from a previous run are available, they can be used as
initial conditions for a subsequent run. The use of results from
a previous run as initial conditions is referred to as a
hot start.

Boundary Conditions

Boundary conditions are specified around the entire boundary
of a network for the duration of a simulation. Boundary condi-
tion specifications consist of either the normal mass flux

(normal flow) or the normal force (normal stress), in addition to



either the tangential mass flux (tangential flow) or the tangen-
tial force (shear stress) at all points on the boundary of a

network.

The required boundary information depends on the type of
boundary and the flow condition. Physically, there are two types
of boundaries that are encountered in surface-water flow
problems: (1) A solid, or no-flux, boundary; and (2) an open

boundary.

Solid boundary

A solid boundary defines a geometric feature such as a
natural shoreline, a highway embankment, a jetty, or a seawall.
The flow across a solid boundary generally equals zero. In
addition, either the tangential velocity or tangential stress
needs to be specified on a solid boundary.

Along solid boundaries, either tangential stresses are
assumed to equal zero (a slip condition) or the velocity is set
to zero (a no-slip condition). When a slip condition is
specified along a solid boundary, velocities at a boundary node
are required to satisfy a condition that causes zero net flow to
cross the boundary. When a no-slip condition is prescribed, the
requirement of zero flow across the boundary is automatically
satisfied. A slip condition usually is prescribed along all

solid boundaries.

Open boundary

An open boundary, which is exactly what the name implies,
defines an area where flow is allowed to enter (an inflow bound-
ary) or leave (an outflow boundary) a finite element network.
The values that need to be specified at an open boundary depend
on the type of boundary (inflow or outflow) and the type of flow

(subcritical or supercritical).




Inflow boundary.--If the flow at an inflow boundary node is

subcritical, either (1) unit flow normal to the boundary and unit

flow tangential to the boundary, or (2) water-surface elevation

and tangential shear stress need to be prescribed.

If the flow at an inflow boundary node is supercritical,

unit flow normal to the boundary, unit flow tangential to the
boundary, and water-surface elevation need to be prescribed at

the node.

Tangential shear stresses acting on an open boundary are set
equal to zero automatically if unit flow tangent to the boundary
is not specified. Velocity rather than unit flow can be
specified at an open boundary node. However, the ability to
prescribe velocity directly at a node point seems to offer no

practical advantages.

Usually unit flow in both the x and y directions will be
specified at inflow boundary nodes, and water-surface elevation
(from which depth is determined by subtracting the ground
elevation) is specified at outflow boundary nodes of a
channel/flood plain model. Total flow at a cross section com-
posed of nodes lying on the network boundary can also be
specified. Assigning open boundary inflows using this feature of
FLOMOD greatly simplifies the specification of unit flows at
upstream boundaries of channel/flood plain models (outflows can
be specified as well). Water-surface elevations along a cross
section composed of boundary nodes can also be specified.
Water-surface elevations may be constant across the section, or

slope from one side of the cross section to the other.

Qutflow boundary.--If flow at an outflow boundary node 1is

subcritical, water-surface elevation and tangential shear stress

need to be prescribed. Tangential shear stresses are set to zero
automatically, so only water-surface elevation needs to be

specified.



If flow at an outflow boundary node is supercritical, only

tangential shear stresses are prescribed, and this is done
automatically. However, the fact that a node is a supercritical
outflow boundary node still needs to be specified.




Section 5

FINITE ELEMENT EQUATIONS

The method of weighted residuals using Galerkin weighting is
applied to the governing depth-averaged flow equations to form
the finite element equations. Because the system of equations is
nonlinear, Newton's iterative method (see, for example,
Zienkiewicz, 1977, p. 452) is used to obtain a solution. To
apply Newton's method, at each iteration the governing equations
are used to define a residual and hence are referred to as
residual equations. In addition, a matrix of derivativés with
respect to each dependent variable for each residual equation is
required. This matrix is called the Jacobian, or tangent, matrix
and each of its members is defined by a derivative expression.
The finite element formulations of the residual and derivative
equations at the ith node point are presented in the following
sections. Application of boundary and other "special" conditions

also is described.

Residual Expressions

Finite element formulations for the residuals of the depth-

averaged flow equations written at node i are

az

_ au 3H b _ 1, b _ _s
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+ 7 fo N,[(BHUU + igu?)a_ + BHUVL ] ds
o Se i 2 X y e
A, U | 3U a, U . 3V _

g J’Se N, [OH(55 + 5308, + \)H(W + 3—§)zy] ds, (5-1)



for the momentum equation in the x-direction, and

9H 92y,

_ v 3H b 1l b _ _s
£, = g J'Ae{N.l[Hat + Ve + gHay + QHU + ST o)1
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for the momentum equation in the y-direction, and

= 9H U oH Vv 9H -
£3; 7 g J‘Ae Milgg * Hay + Ugg * HBy * Vay] dAg (5-3)

for the continuity equation, where ) indicates a summation over
e
all elements, A, indicates an element surface, S indicates an

element boundary, and Qx and & are the direction cosines between
the outward normal to the boundary and the x and y directions,
respectively. All second-derivative terms in the momentum equa-
tions have been integrated by parts using Green's theorem.
Reduction of the order of the expressions in this way allows use
of quadratic functions to interpolate velocities. The convective
and pressure terms also have been integrated by parts.
Integration by parts of the convective terms simplifies the
finite element equation formulation, and integration by parts of
the pressure terms facilitates application of normal-stress
boundary conditions. The last boundary integral in the two
momentum residual expressions represents the lateral stress
resulting from the transport of momentum by turbulence.




Time Derivatives

Expressions 5-1, 5-2, and 5-3 apply to a particular instant
in time. If a steady-state solution is desired, all the time
derivatives are equal to zero and do not need to be evaluated.
However, if the solution is time dependent, the residuals need to
be integrated with respect to time as well as with respect to
space. Time integration is accomplished using an implicit finite
difference representation of the time derivatives For example,
the derivative of U with respect to time at the end of a time

step is computed as

c

U _ 1 .. _ .. _ (L-8) 43U _
= gactY ~ Uy) 5 (3E)o - (5-4)

Q>
t+

where 6 is a weighting coefficient ranging between 0.5 and 1; At
is the length of the time step; and the subscript o indicates
known values at the start of the time step. A simple implicit
(backward Euler) time-integration scheme results from setting 6
equal to 1, and a trapezoidal time~integration scheme results
from setting & equal to 0.5. Setting 6 equal to 0.67 has been
found to produce a stable solution even for relatively large time
steps and also to provide an accurate solution (King and Norton,

1978). The expressions for 3U/3dt can be rearranged as
au _ _ _
e aU Bl ’ (5-5)
where
*—lo —
a—‘é—t, (5-6)
and
_ (1-86) 30 _
By al, * 6 (5t)o - (5-7)

The term Bl contains only quantities that are known at the start

of a time step.

5 - 3



In a similar manner, time derivatives of V and H are defined

as
SL=av-8,, (5-8)
and
oH _ _ _
where
= __ﬁ.__l . -
82 OLV + (at)o ’ (5 10)
and
- (1 -296)3 _
By = aH_ + 5 (Bt) . (5-11)

Derivative Expressions

The finite element formulations of the derivatives of the
depth—averaged flow equation residuals are written for node i
with respect to variables at node j. The derivative expressions
for the residual of the conservation of momentum equation in the

x direction are:
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Derivative expressions for the residual of the conservation of

nomentum equation in the y direction are:
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where
0, if Chézy discharge coefficients are used;
acf
F): .

2
i%%—, if Manning roughness coefficients are used;
H

and ¢ = 0.151 for U.S. Customary units, and 0.333 for S.I. units.
The derivative expressions for the equation of continuity

residual are:
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Application of Boundary and Special Conditions

The Galerkin finite element formulation allows complicated
boundary conditions to be automatically satisfied as natural
conditions of the problem. These natural boundary conditions are
implicitly imposed in the problem statement and require no fur-
ther treatment. Those boundary conditions that are imposed
explicitly are known as forced, or essential, conditions. These
boundary values are prescribed by modifying the finite element
equation governing that variable. 1In addition, special boundary
conditions imposed by one-dimensional flow at culverts and weirs

can be easily applied.
Open Boundaries

Velocities and depth can be applied as essential boundary
conditions at any node point on an open boundary as long as the
system of equations does not become overconstrained. Velocities
and depth are prescribed at node point i by replacing the

residual expressions by

£, =0; (5-21)
f _ *
2i = Vi » (5-22)
and
£.. = H 5-23
3i i 7 ( )

and replacing the derivative expressions by

3f . . 1, if i =3 3f,, 9f ;

3Ull 23 ; svli = 0; gﬁll = 0; (5-24a,b,c)
j 0, if i # 3 3 3

of . of . 1, if i =3 of .

aU21 = 0; av21 - ; ; 5ﬁ2£ = 0; (5-25a,b,c)
j j 0, if i # 3 j



af .. af .. 3f 5, 1, if i = ]
- = 0; - = 0; 3H = ; (5_26a’b,c)
j 3 3 0, if i # 3

* * *
where Ui’ Vi' and Hi are the specified values. Unit flow rates
are applied at node i in a similar manner by defining the momen-

tum equation residuals as

h
il

U.H, -

1i i1 Qyi (5-27)

and

£

i

ViH, - q . (5-27)
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and replacing the momentum equation derivative expressions by

afli ) Hi’ if i = j- afli _ 0. afli } Ui’ if 1 = ].
90y 0, ifi#j Y 9H, 0, if i # 3
(5-28a,b,c)
and
afZi - o afli _ gHi, if i = J_ afli ) Ui’ if 1 = j‘
90y vy 0, if i #3 °Hy 0, if i # 3

where dy; and qyi are specified unit flow rates in the x and y

directions, respectively, at node 1i.

Depth also can be applied as a natural boundary condition by
using the specified value of depth at node i, HZ, to evaluate the
boundary integral terms in the momentum equation residual expres-
sions 5-1 and 5-2. Contributions from the boundary-integral
terms are taken as zero when derivatives of the momentum equation
residuals with respect to H; are computed.

When water depth is specified as a natural boundary condi-
tion, global mass conservation is insured and total inflow will




equal total outflow in steady-state simulations. However, water
depths computed at nodes where the water-surface elevation is
applied as a natural boundary condition may differ slightly from
the specified values. When water depth is specified as an essen-
tial boundary condition the computed depth will equal the
specified depth, but the total outflow may differ slightly from
the total inflow in steady-state simulations.

If total flow through a cross section that forms part of the
open boundary of a finite element network is specified, a con-
stant energy slope along the section is assumed and the total
flow is divided among the node points on the basis of conveyance.
The cross section is defined byla list of node points that form a
connected series of element sides. Each element side is composed
of three nodes (1, 2, and 3) where nodes 1 and 3 are corner
nodes, and node 2 is a midside node. Conveyance through each
element side is defined as

K = A/GR/C, , (5-30)

where R is the hydraulic radius (area divided by wetted
perimeter) of the element side; and A is the area of the element
side below the water surface. Total conveyance for the cross
section is computed as the sum of the conveyance of each element
side that is contained in the section.

Conveyance through each element side is distributed among
the three nodes that form the side as follows:

K, = K (1 -1¢)/6, (5-31)
K, = 2K/3 , (5-32)
Ky = K (1 +2)/6 ; (5-33)



where ¢ = SAH/12H; AH = H, - H;; H = (H; + H;)/2; H, is the depth
at node 1; and H3 is the depth at node 3. Total flow normal to
the open boundary at each cross section node point is computed on
the basis of the ratio of conveyance assigned to each node to the
total conveyance computed for the cross section. The velocities
and depth computed at each node are required to satisfy the
condition that the net flow across the open boundary resulting
from flow at the node will equal the assigned portion of the
total cross section flow. The procedure used to specify net flow
across a boundary that results from a single node point is

described in a subsequent section.
Solid Boundaries

Solid boundaries define features such as natural shorelines,
jetties, or seawalls. For viscous fluids, the velocity at a
solid boundary is actually zero. This is commonly referred to as
a "no-slip" boundary condition. A no-slip condition can be
specified by applying x and y velocities of zero as essential
boundary conditions. To accurately model the flow near a bound-
ary at which a no-slip condition has been imposed, a network
composed of relatively small elements is needed. However, for
practical purposes a "slip" condition usually is applied at a
solid boundary whereby flow is allowed to move in a direction
tangent to the boundary. Imposing a slip condition at solid
boundaries reduces the total number of elements needed in a
network and thus decreases the number of equations that need to
be solved. Slip conditions are applied at a solid boundary node
by first transforming the x and y momentum equations that are
associated with that node into equations that express conserva-
tion of momentum in directions that are tangent and normal to the
boundary. The conservation of momentum equation for flow in the
normal direction is then replaced by a constraint equation that
requires the net flow across the solid boundary that results from




flow at the node point to equal zero. This procedure is
described in the following section.

Total Flow Across a Boundary

Total flow across a boundary (normal flow) at a node point
comes from several sources. Flow across an open boundary is

defined as
+ Q . , (5-34)

where Qgi is the flow normal to the boundary at node i that is
specified directly; and Qxi is the amount of the total flow
through a cross section that is assigned to node i by the proce-
dure discussed in the subsection on open boundaries. Flow across
a solid boundary is defined as
0f =% +0Q . +0

1 si wi ci’ (5-35)

where in is the flow normal to the solid boundary at node i that

is specified directly; Q is the computed flow over a weir

wi
(roadway embankment) segment at node i; and QCi is the computed

flow through a culvert at node i.

Along a boundary (either open or solid) where flow normal to
the boundary is to be prescribed, the conservation of momentum
residual expressions for flows in the x and y directions first
are transformed into conservation of momentum residual expres-
sions for flows in directions that are tangent and normal to the
boundary. At node point i, the transformation is given by

= f cos § + £ sin § (5-36)

]
£1i 1i 2i
and

féi = —fli sin § + f2i cos § (5-37)



where fii and féi are the transformed momentum residual expres-
sions in the tangential and normal directions, respectively; and
§ is the angle between the positive x direction and a tangent to

the boundary at node 1i.

If flow normal to an open boundary at node i is specified,
the conservation of momentum equation for flow tangential to the

boundary is replaced by the equation
o o o _ _
aju; + bov, - Q7 =0 . (5-38)

If flow normal to a solid boundary at node i is specified, the
conservation of momentum equation for flow normal to the boundary

is replaced by the expression
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coefficients that are determined by requiring the computed flow

and b? in expressions 5-38 and 5-39 are

across an open or solid boundary at node i to equal the specified
flow, that is
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where N is the interpolation function for velocity at node i; Sg

is the part of the network boundary that is open; and S: is the
part of the network boundary that is solid. Comparing expression
5-38 to expression 5-40, and expression 5-39 to expression 5-41,
it is readily seen that
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Derivatives of the constraint equation for total flow across

an open boundary are computed as
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Derivatives of the constraint equation for total flow across a

solid boundary are computed as
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Depth-Averaged Pressure Flow

When two-dimensional flow through a bridge is in contact
with the ceiling, pressure flow exists and the pressure, P, at
node points replaces the flow depth, H, as the solution variable.

Residual Expressions

In the case of pressure flow, the finite element formula-
tions for the residuals of the depth-averaged flow equations
written at node i are
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for the momentum equation in the y-direction; and

_ U, 3H | L8V 3 B}
£y 7 g IAe MjlHgx + Ugx ¥ Hgy + Vgyl i (5-60)
for the continuity equation; where H = Z2, = Zp-

Derivative Expressions

Derivatives of the depth-averaged pressure-flow residuals
are written for variables at node i with respect to variables at
node j. For the conservation of momentum equation for flow in

the x direction, the derivative expressions are
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The derivative expressions for the conservation of momentum

equation for flow in the y-direction are
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The derivative expressions for the continuity equation residual

are

and

af 45
50
j

9f 4,
5V -
j

0,0

} 6,0

1

NG|

1

'Nj[

J

3H
9X

3H
y

]+ M, = [H]} da, ;

]+ M, 55 [H]} da_ ;

(5-67)

(5-68)

(5-69)




Section 6

MODELING SYSTEM OPERATION

The steps generally taken to operate FESWMS-2DH are:
(1) Data collection, (2) network design, (3) calibration,
(4) validation, and (5) application. These five steps are common
to the operation of almost any type of numerical model and are
described in this section.

Data Collection

After a surface-water flow problem has been defined, the
first step in the operation of the modeling system consists of
gathering data. The required data are classified as either
topographic or hydraulic data. Topographic data describe the
geometry of the physical system and include an evaluation of
surface roughness to be used in estimating bed friction coeffi-
cients. Hydraulic data include measurements of stage and flow
hydrographs; spot measurements of stage, flow, and velocity;
high-water marks left by floods; rating curves; limits of flood-
ing; and wind measurements. Hydraulic data are used to establish
model boundary conditions, and to calibrate and validate a model.

Data requirements are summarized in table 6-1.

The type and amount of data that are needed to design a
network properly and to apply a model mainly depend on the pur-
pose of the model. The more data that can be obtained the
better, and all of it can be used to improve the quality of a
model's output. Theoretically, any surface-water flow can be
simulated as accurately as desired provided the important physi-
cal processes are represented adequately by the governing
equations. However, the purpose of a model needs to be con-
sidered when deciding what and how much data is needed to provide
results of the desired accuracy. For example, a finite



Table 6-1.

modeling system.

Summary of data that may be needed to apply the

Data item

Use of data

Source of data

Ground—-surface
elevations

Bridge and culvert
dimensions

Channel and overbank

surface roughness
and regularity

Water—-surface
elevations

Current velocity
or flow rate

Wind velocity

Water temperature

Latitude

Assignment of ground- Hydrographic and

surface elevations
at each node, and
layout of a network

Layout of a network,
assignment of 1-D
bridge and culvert
parameters

Evaluation of bed

friction coefficients

and eddy viscosity

Establishment of
boundary conditions,
model calibration,
and model validation

Establishment of
boundary conditions,
model calibration,
and model validation

Computation of
water—surface
stresses

Determination of
water density

Computation of
Coriolis force

topographic charts and
field surveys

Design drawings and
field surveys

Aerial and ground
photographs, field
inspection

Field measurements,
gauge records

Field measurements,
gauge records

Field measurements,
weather station
records

Field measurement,
gauge records

Map




element model of flow in a laboratory flume might require a
computational resolution of inches (or less) to provide the
desired results. On the other hand, a model of a tidal estuary
might require a computational resolution of a mile or more.

It is difficult to determine the minimum data requirements
for a particular application. Model construction (that is,
network design, calibration, and validation) and subsequent
application require consideration of the objective of the study
and the available time, manpower, and funding. Because time,
manpower, and funding always have finite limits, decisions need
to be made regarding the degree of detail to be represented by
the model and the extent of calibration and validation to be
performed. If a high level of detail is provided by a network,
the risk of not representing a physical system properly will be
reduced, but the difficulty (in time and expense) of obtaining a
solution will be increased. On the other hand, if a simple
network is designed, the risk of not accurately representing a
physical system will be increased, but the difficulty of obtain-
ing a solution will be reduced. A knowledge of the important
physical processes that govern the response of a system under
study is needed to evaluate the trade-off between risk of not
accurately representing the system and difficulty of obtaining a
solution. Sometimes constraints on time, manpower, or funding
will predetermine the level of discretization to be used and/or
the amount of calibration and validation to be performed, thus
requiring acceptance of a larger amount of risk than would other-
wise be desired.

Network Design

The next step in applying FESWMS-2DH is to design a finite
element network. Network design can be defined simply as the
process whereby the surface-water body being modeled is sub-
divided into an assemblage of finite elements. The basic goal of
network design is to create a representation of the water body



that provides an adequate approximation of the true solution of
the governing equations at a reasonable cost. There are no set
rules for achieving this goal because of the many different
conditions encountered from one problem to the next. The design
of a satisfactory finite element network depends largely on the
use of sound engineering judgement gained from previous modeling
experience. However, some helpful guidelines are presented in

this section.
General Network Layout

Design of a finite element network requires decisions as to
the number, size, shape, and configuration of elements used to
provide an adequate representation of the water body that is to
be modeled. As long as the elements obey some basic requirements
for a convergent solution, the accuracy of the solution will
improve as the size of the elements in a network is reduced.
However, increasing the number of elements in a network also
increases computational expenses. Elements need to be made small
enough to provide a solution of sufficient detail and accuracy,
yet large enough to obtain the solution at a reasonable cost.

The first step in the design process is to obtain a map of
the surface water body to be modeled. The map scale and detail
that are required depend on the degree of solution accuracy that
is desired. Because some trial-and-error probably will be needed
during network design, it is best to overlay the map with a
clear, gridded mylar sheet. It will be much easier to erase and
redesign on the mylar sheet than on paper. A gridded mylar sheet
also provides an easy means of determining coordinates of node
points. Node point coordinates can be recorded in any system of
units and then converted to the desired units (feet or meters) by
the FESWMS-2DH programs.

Next, the limits of the area to be modeled are defined. As
a general rule, model boundaries are located where water-surface




elevations and flows can be specified accurately. The effect
that errors in boundary conditions will have on a solution needs
to be considered. 1If the accuracy of boundary conditions is not
certain, the limits of a model can be placed as far away as
possible from areas of primary interest so that any errors intro-
duced at the boundaries will have little influence at the points
of interest.

After boundaries have been defined, subdivision of the
solution domain proceeds by dividing the area to be modeled into
relatively large regions that have similar topographic and sur-
face cover characteristics. The subdivision lines between the
regions are located, as much as possible, where abrupt changes in
topography or surface cover occur. The regions then are divided
into elements the size and shape of which will depend on the
desired level of detail in that particular area.

FESWMS-2DH will accept any combination of 6-node triangular,
8-node quadrangular, or 9-node quadrangular elements that have
straight or curved sides so that complex geometries can be
modeled in detail. Curve-sided elements are created simply by
specifying the coordinates of the midside node as well as the
corner nodes of sides that are curved. If the midside-node
coordinates are omitted, an element side is assumed to be
straight and the midside node coordinates are interpolated
halfway between the two adjacent corner nodes.

Some conditions regarding the shape of an element need to be
satisfied so that the determinant of the Jacobian matrix will not
vanish within the element (that is, the isoparametric mapping
between a global element and its parent element needs to be
one-to-one). It is a good idea to make sure that a midside node
is located within the middle third of the curved element side
that it defines as shown in figure 6-1. Also, it is suggested
that internal angles of all elements be kept much less than 180
degrees as shown in figure 6-1.
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Figure 6-1. Some rules for one-to-one mapping of two-dimensional
isoparametric finite elements.




For quadrilaterals, it is suggested that internal angles not

approach zero degrees.

A uniform network in which all the elements have about the
same size and shape throughout is easy to construct but may not
always be practical. The ability to vary the size and shape of
elements within a single network is a major advantage of the
finite element method. 1In regions where the gradients of depend-
ent variables are expected to be large, small elements will
provide a more accurate solution than large elements. Locations
where gradients of velocities and depth can be large include
stream channels, constrictions, and areas near large inflows or
outflows. Small elements also need to be used to model bound-
aries that have irregqular shapes. In regions where the solution
variables are expected to change very slowly, or in areas of the
model that are of minor interest, relatively large elements may
provide a solution of sufficient accuracy. The transition be-
tween a section of a network that is composed of large elements
and a section of a network that is composed of much smaller
elements needs to be gradual; that is, very large elements should
not be connected to very small elements. Also, it is a good idea
to position nodes at locations where point inflows or outflows

are to be applied.

The question of which type of element to use to construct a
network (that is, a 6—node triangle, an 8-node quadrangle, or a
9-node quadrangle) is not answered easily. The ease of ap-
proximating a two-dimensional region with an assemblage of
arbitrary triangular elements has been demonstrated in many
applications. The two kinds of quadrangular elements are similar
except for the presence of an internal node in the 9-node
Lagrangian element. The additional node in a 9-node qua-
drilateral element requires a little more computational effort,
but provides a slightly more accurate solution than an 8-node
quadrilateral element. For most networks, a mixture of 6-node



triangular elements and 9-node quadrangular elements will provide
the best representation of the water body that is being modeled.

Another characteristic of network design that affects a
finite element solution is the aspect ratio of elements used in
the network. The aspect ratio of a two-dimensional element is
defined as the ratio of the longest element dimension to the
shortest element dimension. The optimum aspect ratio for a
particular element depends on the local gradients of the solution
variables. If the gradients can be estimated in advance, it is
best to align the longest element dimension to the direction of
the smallest gradient, and to align the shortest element dimen-
sion to the direction of the largest gradient. Elements that
have aspect ratios that are much greater than unity need to be
designed cautiously. A well-designed network usually will be
composed of elements that have a variety of shapes, siées, and a

wide range of aspect ratios.
One-Dimensional Weirs and Culverts

One—dimensional flow modeled at weirs, culverts, and small
bridges is treated as a point flow on the boundary of a finite
element network. A point flow is the total flow that crosses the

network boundary because of flow at a single node point.

One-dimensional weirs and culverts are described by a set of
parameters and two boundary node points, one on either side of a
welr or on either end of a culvert. Flow over a weir or through
a culvert is computed on the basis of the water-surface eleva-
tions and velocities at the two node points, and the specified
parameters. The following items need to be specified for each
weir segment: (1) A discharge coefficient for free-flow condi-
tions; (2) length of the weir segment; and (3) crest elevation of
the weir segment. The following items need to be specified for
each culvert: (1) A discharge coefficient; (2) cross-sectional
area of the culvert barrel; (3) hydraulic radius of the culvert




barrel flowing full; (4) length of the culvert barrel; (5)
Manning roughness coefficient of the culvert barrel; and (6)
invert elevation at the culvert entrance.

Flow over roadway embankments is modeled best as one-
dimensional weir flow. To model weir flow over roadway
embankments, a finite element network needs to be designed so
that solid boundaries are located on both sides of an embankment.
The embankment is divided into a number of weir segments, and
appropriate parameters assigned to each segment. The number of
segments to use depends on the variation of the roadway elevation
along the embankment and the spacing of node points on the solid
boundaries that define the embankment. Node points that define
the sides of a weir segment need to be located approximately at
the center of the weir segment. The location of a weir segment
needs to be considered during initial design of a finite element
network in the vicinity of a roadway embankment.

A single node point can be used to define the side and/or
end of more than one weir segment and/or culvert. The same two
node points are used for both the weir segment and the culvert

shown in figure 6-2.

Two-Dimensional Bridges

Two-dimensional flow through a bridge or a culvert is
modeled exactly as ordinary free-surface flow when the water
surface is not in contact with the top of the bridge or culvert
opening. However, when the water surface is in contact with the
top of an opening pressure flow exists. When pressure flow
conditions can occur at a bridge or culvert, special considera-
tion needs to be given to the design of a finite element network

in the vicinity of the structure.

If pressure flow within a bridge opening is to be con-
sidered, at least two rows of elements that conform to the
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Figure 6-2. A finite element network at a roadway embankment
that contains a culvert and is divided into weir segments.
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bridge deck need to be constructed as shown in figure 6-3. The

elevation of the ceiling (that is, the underside of the bridge
deck) also needs to be specified for each of the corner nodes
contained in elements that describe an opening. More than two
rows of elements within an op